ANR Horizontal-V1 (2017--2021): Connectivité Horizontale et Prédiction de Cohérences dans l'Intégration de Contour et Mouvement dans le Cortex Visuel Primaire

The Horizontal-V1 project aims at understanding the emergence of sensory predictions linking local shape attributes (orientation, contour) to global indices of movement (direction, speed, trajectory) at the earliest stage of cortical processing (primary visual cortex, i.e. V1). We will study how the long-distance "horizontal" connectivity, intrinsic to V1 and the feedback from higher cortical areas contribute to a dynamic processing of local-to-global features as a function of the context (eg displacement along a trajectory; during reafference change induced by eye-movements...). We will search to characterize the dynamic processes based on lateral propagation intra-V1, through which spatio-temporal inferences (continuous movement or apparent motion sequences) facilitating spatial ("filling-in") or positional ("flash-lag") future expected responses may be generated. The project will use a variety of animations of local oriented stimuli forming, according to their spatial and temporal coherence, predictable global patterns, apparent motion sequences and/or continuous trajectories. We will measure the cortical dynamics at two scales of neuronal integration, from micro- (intracellular, SUA) to meso-scopic levels (multi-electrode arrays (MEA) and voltage sensitive dye imaging (VSDI)) in the anesthetized (cat, marmoset) and awake fixating animal (macaca mulata). In a second step, we will combine these multiscale observations to constrain a structuro-functional model of low-level perception, integrating the micro-meso constraints. Two laboratories will participate in synergy to the project: UNIC-Gif (Dir. Yves Frégnac, DRCE2 CNRS, coordinator) and INT-Marseille (NeOpTo Team Dir. Frederic Chavane, DR2 CNRS).

WP3 - Design of novel visual paradigms, probabilistic model of V1 and data-driven simulations - co lead UNIC-INT.

Objectives : This WP will have two primary goals. The first one is theoretically driven, and for sake of simplicity will ignore the dynamic features of neural integration (as expected from a statistical model of image analysis). Binding the different features of visual objects at the local scale (contours) as well as a more global level involves understanding the statistical regularities of the sensory inflow. In particular, titrating the predictions that can be done at the statistical level can be seen as a first pass to better search for critical parameters constraining the network behaviour. From these, we will build probabilistic predictive models optimized for edge co-occurrence classification and generate novel visual statistics 1) which obey rules imposed by the functional horizontal connectivity anisotropies, such as co- circularity, and 2) which facilitate binding in the orientation domain, such as log-polar planforms. These statistics generated in the first half of the grant will be implemented and tested experimentally in the second half of the grant. The second one is more data-driven (as well as phenomenological for feedback from higher cortical areas, since it will not be explored in the grant). Since model fitting will depend on close interactions with WP1 and WP2 measurements, it will be done in the second half of the grant.

WP3-Task 1: Theoretically oriented workplan – Lead INT (Laurent Perrinet)

Similarly, we expect to see that the different independent features should decompose at various scales both in space and in time. For instance, we expect configurational aspects to be more local while aspects related to a motion (Perrinet and Masson, 2012; Khoei et al, 2016) or global shape (form) should be more global. This translates into a probabilistic hierarchical model that would combine dependencies from different cues. In particular, through the emergence of differential pathways for form and motion. These quantitative predictions should finally be confronted at the modelling and neurophysiological levels.

WP3-Task 2 : Data-driven comprehensive model of V1 – Co-lead UNIC and INT

The second task is more data-driven (as well as phenomenological for the feedback circuit part, since largely unknown). Since simulations will depend on close interactions with WP1 and WP2 measurements, it will be developed by the WP3-Post-Doc in the second half of the grant. It will benefit from existing structuro-functional models addressing separately two distinct levels of neural integration, microscopic (conductance-based in Kremkow et al, 2016; Antolik et al, submitted, Chariker et al, 2016) and mesoscopic (VSD-like mean field in Rankin and Chavane, 2017). Efforts will be made to merge these models to fit - in a unified multiscale biologically realistic model - the cellular and VSD data targeting critically horizontal propagation. The parameterization should be flexible enough to produce a generic cortical architecture accounting possibly for species-specificity (Antolik for cat; Chaliker for monkey)

The Marseille team

List of pages this category:

This work was supported by ANR project "Horizontal-V1" N° ANR-XXXXXXX.
ANR logo

TagTag TagGrants TagYear17 TagYear18 TagYear19 TagYear20 TagYear21

welcome: please sign in