The V1–V2–V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex

Mukund Balasubramaniana, Jonathan Polimenib, Eric L. Schwartz a,*,1
a Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA
b Department of Electrical and Computer Engineering, Boston University, 8 St Mary’s Street, Boston, MA 02215, USA

Abstract

The mapping function \(w = k \log(z + a) \) is a widely accepted approximation to the topographic structure of primate V1 foveal and parafoveal regions. A better model, at the cost of an additional parameter, captures the full field topographic map in terms of the dipole map function \(w = k \log [(z + a)(z + b)]/C \). However, neither model describes topographic shear since they are both explicitly complex-analytic or conformal. In this paper, we adopt a simple ansatz for topographic shear in V1, V2, and V3 that assumes that cortical topographic shear is rotational, i.e. a compression along iso-eccentricity contours. We model the constant rotational shear with a quasiconformal mapping, the wedge mapping. Composing this wedge mapping with the dipole mapping provides an approximation to V1, V2, and V3 topographic structure, effectively unifying all three areas into a single V1–V2–V3 complex using five independent parameters. This work represents the first full-field, multi-area, quasiconformal model of striate and extra-striate topographic map structure. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Topography; Visuotopy; Primary visual cortex (V1); Striate cortex; Extra-striate cortex; Quasiconformal mapping; Topographic shear; Models of visual cortex

1. Introduction

Primate visual cortex contains multiple topographic maps of the visual hemi-field that are ‘continuous’: neighboring points in the visual field project to neighboring points in the cortex. The cortical magnification factor was defined by Daniel and Whitteridge (1961) to be the distance in cortex (in millimeters) devoted to representing a step of 1° in visual space. If the mapping function is complex-analytic, then the magnification factor represents the magnitude of the derivative of the mapping.

In recent years, there have been several functional magnetic resonance imaging (fMRI) studies of visual topography, or visuotopy. These studies have not only provided a method to non-invasively identify the borders of several visual cortical areas (DeYoe et al., 1996; Sereno et al., 1995), but have also provided a means to estimate the spatial precision of fMRI (Engel, Glover, & Wandell, 1997). Since topography is the most direct and unequivocal fMRI measurement for visual cortex, it is of importance for the purpose of validating, calibrating, and extending fMRI technology. Thus, both applied studies involving brain imaging and basic scientific studies of visual processing would benefit from a simple model of striate and extra-striate topography.

It has been reported that in area V1 the cortical magnification is either isotropic, i.e. locally invariant to the direction of the step in visual space (Daniel & Whitteridge, 1961; Dow, Vautin, & Bauer, 1985), or approximately isotropic (van Essen, Newsome, & Maunsell, 1984; Schwartz, 1985; Tootell, Silverman, Switkes, & DeValois, 1985). Complex-analytic functions, whose derivatives are isotropic, represent conformal mappings wherever the derivative is non-zero, i.e. they are mappings that locally preserve angles. Therefore, it is natural to consider conformal mappings as approximations to V1 topography (Schwartz, 1977, 1980). Although the mapping function corresponding to cortical visuotopy has proved to be largely conformal, there exist significant deviations in the topographic mapping from pure conformality. This deviation manifests itself as a topographic anisotropy, or shear.

The goal of this paper is to introduce quasiconformal methods for modeling the topography of visual cortex. Our model, called the wedge–dipole model, incorporates a simplifying assumption of uniform shear throughout a given cortical area. In addition, the wedge–dipole mapping...
embraces a unified model for the topography of the full visual field in areas V1, V2, and V3.

2. Review of previous models of cortical topography

2.1. The monopole mapping

The reciprocal of the V1 magnification factor has been reported to be approximately linear (Schwartz, 1977, 1994; Wilson, Levi, Maffei, Rovamo, & DeValois, 1990). The analytical description, \(w = \log(z) \), with \(z \) restricted to the half-disc, is therefore an obvious candidate to model the two-dimensional structure of the mapping domain, as the magnitude of its derivative is inverse-linear. However, the complex logarithm has a singularity at the point \(z = 0 \). One can remove the singular point from the mapping domain by choosing the function \(w = k \log(z + a) \), which places the singularity at \(z = -a \) (see Fig. 1(b)). This function is the electrostatic complex potential in two dimensions of a single charge placed at \(z = -a \) (Needham, 1997), and therefore we refer to it as the \(a \)-monopole mapping (henceforth simply the monopole mapping). The monopole mapping captures the approximate shape of flattened V1, as well as the internal details of the topography (Schwartz, 1977, 1980). However, it does not adequately capture the far peripheral data where the inverse magnification factor is sub-linear (Schwartz, 1984), nor does it capture the shape of the far peripheral field representation in flattened V1 (e.g., compare Fig. 1(b) and (c)).

2.2. The dipole mapping

The complex potential of a pair of opposite charges (a dipole) is given by the sum of two oppositely charged monopole potentials: \(w = \log(z + a) - \log(z + b) \), where the positive charge is at \(z = -a \) and the negative at \(z = -b \). We shall refer to this function as the near-field ab-dipole mapping (henceforth the dipole mapping). The monopole mapping may be considered as a special case of the dipole for which \(b = \infty \). The second parameter \(b \) captures the shape of the V1 boundary exhibited at the peripheral representation (see Fig. 1(b)), as well as the fact that inverse cortical magnification factor is sub-linear in the peripheral field (Schwartz, 1983, 1984), and thus provides a two parameter approximation of the full-field topography of V1.

2.3. Numerical conformal mapping

The monopole and dipole maps are examples of closed-form expressions for conformal mappings. A more general conformal model is obtained by numerical conformal mapping, as demonstrated by Frederick and Schwartz (1990) and Schwartz (1994). In this work, the border of area V1 was computed via quasi-isometric brain flattening (Wolfson & Schwartz, 1989). Given a boundary specification, a single point correspondence, and an orientation, the Riemann mapping theorem guarantees the existence and uniqueness of a conformal mapping to the unit disc (Ahlfors, 1966a), which can be carried through to the visual hemi-field. The Symm algorithm (Symm, 1966) was then used to compute the V1 mapping, where the cortical representation of the blind spot provided the point correspondence and orientation. The result is in good agreement with 2DG data, with the typical error in the range of 10% of the linear dimensions of V1 (see Schwartz, 1994).

2.4. Topographic shear

Considerable shear has been observed near the vertical meridian representation of V1 (Blasdel & Campbell, 2001). Furthermore, a large amount of shear has been reported in V2 (Rosa, Sousa, & Gatass, 1988). In Section 3, we present a model that assumes a simple form of shear: a constant, compressive shear prescribed along the iso-eccentricity curves in each area. This shear model is consistent with reports that the V2 magnification factor measured perpendicular to the V1–V2 border is much smaller (between 3:1 and 6:1) than that measured in the parallel direction (Roe & Ts’o, 1998).

We treat this simple form of shear as an ansatz (i.e., a preliminary working hypothesis). In Section 4, we discuss the replacement of this type of shear with more realistic ideas that incorporate known information about topographic shear.

3. Modeling topography of visual cortex

3.1. Model goals

Our goals in modeling the topography of areas V1, V2, and V3 are as follows:

1. the maps must account for shear in V1, V2 and V3;
2. the model must match the global shapes of areas V1, V2, and V3 as well as their relative surface areas;
3. adjacent topographic areas must exhibit boundary conditions such that V1 and V2 share a boundary along the vertical meridian representation, and V2 and V3 share a boundary along the horizontal meridian representation (see Fig. 1(g));
4. the Jacobian of the topographic map must reverse sign

\(a \) The opposite hemi-field can be symmetrically represented by \(w = 2 \log(a) - \log(z + a) \) for \(\text{Re}(z) \leq 0 \), as in Rojer and Schwartz (1990), with an analogous construction for the dipole map.

\(b \) The term near-field emphasizes that we are examining the dipole field in the region between the charges, not the usual far-field dipole familiar in electrostatics, which considers the distance between the charges to approach zero.
across the boundaries between V1, V2, and V3, exhibiting the field reversal property described in Sereno et al. (1995);

5. the iso-eccentricity lines must be spaced approximately logarithmically.

We now present the wedge–dipole map, which provides a unified model of V1, V2, and V3 that meets the stated goals.

3.2. The wedge–dipole model

We can represent any point in the visual hemi-field with the complex variable \(z = r e^{i\theta} \), where \(r \) represents eccentricity and \(\theta \) represents polar angle. The wedge map for \(V_k \), \(k = 1, 2, 3 \) is the map

\[
A_k(r e^{i\theta}) = r e^{i\Theta_k(\theta)},
\]

where the function \(\Theta_1 \) for V1 is given by

\[
\Theta_1(\theta) = \alpha_1 \theta,
\]

the function \(\Theta_2 \) for V2 is given by\(^4\)

\[
\Theta_2(\theta) = \begin{cases}
-\alpha_2 \left(\theta - \frac{\pi}{2} \right) + \Theta_3 \left(\frac{\pi}{2} \right) & \text{if } 0^+ \leq \theta \leq \frac{\pi}{2}, \\
-\alpha_2 \left(\theta + \frac{\pi}{2} \right) + \Theta_3 \left(-\frac{\pi}{2} \right) & \text{if } -\frac{\pi}{2} \leq \theta \leq 0^-,
\end{cases}
\]

and the function \(\Theta_3 \) for V3 is given by

\[
\Theta_3(\theta) = \begin{cases}
\alpha_3 \theta + \Theta_3(0^+) & \text{if } 0^+ \leq \theta \leq \frac{\pi}{2}, \\
\alpha_3 \theta + \Theta_3(0^-) & \text{if } -\frac{\pi}{2} \leq \theta \leq 0^-.
\end{cases}
\]

The wedge map warps three copies of the visual hemi-field (one each for V1, V2, and V3) and places them into the ‘pac-man’ shape shown in Fig. 1(e). Each copy has been compressed by an amount \(\alpha_k \) in the azimuthal direction, resulting in a rotational shear in each of the wedges.

The wedge map is then composed with a dipole map resulting in a compression along the iso-eccentricity curves of the dipole map, inducing a simple form of shear in each of the areas of the wedge–dipole map.

2. The dipole parameters \(a \) and \(b \) determine the overall shape of the area borders, and the compression parameters \(\alpha_1, \alpha_2, \text{ and } \alpha_3 \) not only prescribe the shear, but also allow the relative surface areas to be varied to match the data.

3. The wedge map construction enforces the boundary conditions between adjacent areas—image points of the V1 vertical meridians correspond to image points of the V2 vertical meridian (i.e. \(r e^{i\Theta_1(\pi/2)} = r e^{i\Theta_2(\pi/2)} \)), and likewise image points of the V2 horizontal meridians correspond to image points of the V3 horizontal meridians (i.e. \(r e^{i\Theta_2(0)} = r e^{i\Theta_3(0)} \)).

4. As \(d\Theta_1/d\theta \) and \(d\Theta_3/d\theta \) are positive, and \(d\Theta_2/d\theta \) is negative (see Eqs. (2)–(4)), the Jacobian of the wedge map, and therefore that of the wedge–dipole map, reverses sign across the borders of adjacent areas.

5. By construction, the dipole mapping ensures logarithmic spacing of iso-eccentricity lines for the parafocal representation and the inverse of its derivative is sublinear for the peripheral representation (Schwartz, 1984).

Note that we are able to jointly model areas V1, V2, and V3 with a single map function, suggesting that these three areas be considered as a single entity, the V1–V2–V3 complex.

4. Discussion

Sources of topographic data. The topographic data shown in Fig. 1(g) and (i) consists of qualitative outlines of topography based on the collective experience of the investigators involved. Unfortunately, there is, at present, very little quantitative topographic data to which we can fit our model. This is partly due to technical difficulties in collecting full-field visuotopic data: in fMRI experiments, the narrow bore of the magnet makes it difficult to present stimuli in the visual periphery. In addition, the unreliability of quantitative topographic data is exemplified by the wide variation in the reported measurements of \(\log(z + a) \) parameter \(a \) with little error analysis (Wilson et al., 1990). Furthermore, it has become common practice to make cuts in cortex that run through the V1–V2–V3 complex (in particular through the base of the calcarine fissure, which corresponds to the representation of the horizontal meridian in V1), prior to flattening (e.g. see Kaas, 1998). These cuts drastically alter the topology of this region of cortex, resulting in flatmaps that need to be deformed and ‘glued’ back together in order to observe the structure of their topography.

Other forms of shear. In this paper, we have assumed a very simple form for the topographic shear. A constant rotational shear is produced by the wedge map in each area,

\(^4\) Here \(0^+ = 0 + |e| \) and \(0^- = 0 - |e| \) as \(e \to 0 \).
The MT-DL model has been scaled by a factor of 0:

component is zero. See Schwartz (1984, 1994) for detailed discussion in the symmetric component). If a map is conformal (i.e., isotropic), its shear (the traceless symmetric component), and a deformation or shear (the traceless

eccentricity lines. Similarly, the shear in V2 could be

dominance columns (ODCs) in V1. However, this idea fails to explain the deficit of shear at the horizontal meridian representation,

resemblance to a V1–V2 complex (Fig. 1(i)), which suggests that this MT-DL complex may also be modeled with the techniques presented in this paper.

Another example of a cortical complex is in the owl monkey, where visual areas MT and DL bear a superficial resemblance to a V1–V2 complex (Fig. 1(i)), which provides convincing support for a single V3 representation (Lyon & Kaas, 2001, 2002), and the V1–V2–V3 complex is consistent with this idea.

Another example of a cortical complex is in the owl monkey, where visual areas MT and DL bear a superficial resemblance to a V1–V2 complex (Fig. 1(i)), which suggests that this MT-DL complex may also be modeled with the techniques presented in this paper.

Visual areas V3, MT, and DL. There has been some question as to whether the cortical area adjacent to V2 on its outer boundary constitutes a single area, V3, or whether it constitutes two different visual areas: VP and V3d (see Kaas et al. (1998) for a review). However, recent studies have provided convincing support for a single V3 representation (Lyon & Kaas, 2001, 2002), and the V1–V2–V3 complex is consistent with this idea.

Another example of a cortical complex is in the owl monkey, where visual areas MT and DL bear a superficial resemblance to a V1–V2 complex (Fig. 1(i)), which suggests that this MT-DL complex may also be modeled with the techniques presented in this paper.

Singularities of cortical maps. The dipole mapping $w = k \log((z + a)(z + b))$ introduces two singularities at $z = -a$ and $z = -b$ on the negative real axis. As more visual areas are included into the wedge map construction, the domain of the dipole mapping begins to approach the singularities, i.e. the ‘pac-man’ in Fig. 1(e) begins to close down onto the negative real axis as more ‘wedges’ (i.e. visual areas) are added to the complex. Another way to see this is to consider modeling V1 and V2 with no rotational compression: the domain of each area would occupy a half-disc, thus the dipole domain would include the entire disc and the singularities on the negative real axis would therefore be unavoidable.

This provides an interpretation of the need for shear in the wedge–dipole model: without rotational compression, the V2 wedge would encounter the logarithmic singularities. The consequence, which we have observed in computer simulation, is that the surface area of V2 diverges if the domain of V2 is allowed to approach the negative real axis in the wedge map. Rotationally shearing V2 compresses the domain of the dipole mapping away from the negative real axis. Thus, the existence of large shear in V2 and V3 in cortex may be a side-effect of the nature of topographic map singularities, together with the observed boundary conditions (i.e. field reversal, shared boundaries, etc.). Avoidance of these singularities may help define the global geometric structure of the cortical topography by regulating the amount of shear and the total area for each region. Under
the assumptions of the wedge–dipole model listed in Section 3.1, there is a trade-off between area and shear such that no more than three or four regions can be represented in a single complex without requiring either very large shear or very small area.

Steady state diffusion source and sink. The real part of the \(ab \)-dipole map is the steady state solution to the diffusion equation

\[
\nabla^2 \phi - \frac{d \phi}{dt} = \delta(x + a, y) - \delta(x + b, y)
\]

for a single source and sink, and the imaginary part is given by its harmonic conjugate (Needham, 1997). From this point of view, it is a ‘natural’ model function to represent two-dimensional patterns. It would appear that developmental modeling, in terms of gradients of morphogenetic or other chemo-tactic control, might benefit from the analysis of this paper. The results of this paper suggest that it may be possible to developmentally code for the topographic structure of visual cortex using a sheared dipole architecture specified by a small number of parameters.

Acknowledgements

This work was supported by ONR MURI N00014-01-1-0624. We thank Michael Cohen and Robert Ajemian for helpful comments and discussion.

References

