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Abstract

Despite the long and fruitful history of neuroscience, a global,
multi-level description of cardinal brain functions is still far from
reach. Using analytical or numerical approaches, Computational Neu-
roscience aims at the emergence of such common principles by using
concepts from Dynamical Systems and Information Theory. The aim
of this Special Issue of the Journal of Physiology (Paris) is to reflect
the latest advances in this field which has been presented during
the NeuroComp08 conference that took place in October 2008 in
Marseille (France). By highlighting a selection of works presented at
the conference, we wish to illustrate the intrinsic diversity of this
field of research but also the need of an unification effort that is
becoming more and more necessary to understand the brain in its
full complexity, from multiple levels of description to a multi-level
understanding.

1 Computational Neuroscience
As experimental tools are providing a better and more precise insight
into the neural activity, the vision that we gain about brain functions
is becoming more and more puzzling. In fact, we face the enormous
diversity of neural cells, the intricacy of the connectivity patterns, the
diversity of signaling mechanisms as well as both non-linearity and non-
stationarity of individual responses. All this contrasts with the appar-
ent noisiness of the neural activity and the intriguing self-organizing
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properties of the nervous system at its different levels of description.
Thus, the brain appears as a complex ensemble for which general or-
ganizational and structural principles, linking the microscopic to the
macroscopic scale, are still missing. Therefore, the Neuroscience com-
munity is constantly in needs of new insights to build a comprehensive
and global view of brain functions.

To achieve such an unprecedented effort, the Neuroscience commu-
nity is widely opening the door to scientists from the fields of physics
or applied mathematics. By doing so, new standards and corpus of
knowledge are keen to emerge before being popularised among biolo-
gists. Formal concepts are imported from various fields, namely artificial
vision (mass action and reaction-diffusion equations), non-equilibrium
physics (attractor, multi-stability and energy functions), artificial intel-
ligence (probabilistic inference, artificial neural networks, theory of de-
cision) or engineer sciences (backward and forward models, signal pro-
cessing, robotics). Computational Neuroscience has emerged from these
multi-disciplinary efforts.

The core approach of Computational Neuroscience is devoted to model
brain functions in terms of information processing (Sejnowski et al.,
1988). Despite a great diversity in neural structures, there is growing
evidence that most of them share some common computational prin-
ciples. In this respect, Computational Neuroscience differs from other
functional approaches, such as Cognitive Neuroscience (which remains
at the phenomenological level), functional brain imaging (giving func-
tional schemes in terms of large scale dynamical interaction patterns),
or biophysical models of the nervous system (looking at the scale of the
single cell and/or small networks). The frontier is of course not strict
between those different views. On one hand, notions which are rooted to
the direct observation of biological activity have raised considerable in-
terest in Computational Neuroscience because of their direct link with
key concepts of information processing concepts. We can cite, among
other, concepts such as “tuning curves” and “receptive fields” (Hubel
and Wiesel, 1962), “phase precession” (O’Keefe and Recce, 1993), “rank-
order coding” (Thorpe et al., 1996), “spike-timing dependent plastic-
ity” (Bi and Poo, 1998), “high conductance states” (Destexhe A and
Pare, 2003) or “feed-forward inhibition” (Wehr and Zador, 2003). On
the other hand, there is a handful of new notions and tools which have
been forged by Computational Neuroscientists and which are now pop-
ularized in neighboring neuroscience fields, such as, for instance, the
notions of “itinerant dynamics” (Tsuda, 1992), “balanced networks” (van
Vreeswijk and Sompolinsky, 1996), “sparse coding” and “over-complete
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representations” (Olshausen and Field, 1997) or “probabilistic popula-
tion codes” (Pouget et al., 2003). This is one objective of this special issue
to illustrate this fruitful handshaking between computational and ”ex-
perimental” neurosciences which can arise at many different complexity
levels of organization, from small networks to language processing.

2 The NeuroComp workgroup in France
Since 2005, the “NeuroComp” workgroup has done a significant effort to
identify and structure a community from the different research teams
having an activity in this field in France. It offers a centralized platform1,
with a list of active research teams, and gathers related information
such as reference papers, softwares, databases, training, conferences
or job opportunities. A scientific event is organized every year to foster
the development of collaborations within the community, encouraging
interdisciplinary exchanges between teams within Neuroscience, Infor-
mation science, Physics, Statistics, Robotics. In particular, even if the
focus is on activities in France, the NeuroComp conference is open to in-
ternational submissions. A role of NeuroComp is also to promote compu-
tational neuroscience within the french education and research institu-
tions. For instance, NeuroComp has contributed to the recent PIRSTEC
initiative2 supported by the Agence Nationale de la Recherche, the main
funding agency for fundamental and applied research. This contribution
highligh the links to be developed between Computational Neuroscience
and Cognitive Sciences. Thus, the goal of the “NeuroComp” workgroup
is not only to direct research initiative towards modeling higher cognitive
functions but also to build new bridges between fundamental research
in cognitive sciences and technological and industrial R&D.

The 2008 edition of the NeuroComp conference attracted about 180
participants from France and abroad, allowing wide and fruitful ex-
changes among the community. The peer-reviewed selection process,
based on 6-pages abstracts, allowed to propose a scientific program
made of 15 contributed talks and about 50 posters3. The key issues
of the field were presented by four invited keynote speakers: Ad Aertsen
(Freiburg, Germany), Gustavo Deco (Barcelona, Spain), Gregor Schöner
(Bochum, Germany), Andrew B. Schwartz (Pittsburgh, USA). Two the-
matic workshops, one on brain-machine interfaces, the other on com-

1http://www.neurocomp.fr
2http://www.agence-nationale-recherche.fr/PIRSTEC
3These abstracts may be browsed on a dedicated preprint server http://hal.

archives-ouvertes.fr/NEUROCOMP08.
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putational vision concluded the edition.
To give a larger echo to the event, the NeuroComp committee, thanks

to the editors of the Journal of Physiology (Paris), proposed to carry out
a special issue for the most original contributions to the conference.
Authors were asked to submit an extended version of their work. From
the 13 full papers, 10 papers were selected out thanks to a 2-stage
peer-reviewed process to build up the present issue. However, note that
it is not a mere compilation of the best contributions to the confer-
ence. Compared to the respective abstracts, these are complete rewrit-
ings that contain new material and developments in order to scale them
to full-size papers standards. Although a majority of the presented pa-
pers come from French teams, this issue is neither expected to give an
overview of the all research tracks taking place in France. It rather aims
at offering a selection of some significant advances recently carried out
in the field.

3 A contextual presentation of the selected
contributions

The contributions presented in this issue may appear diverse in both
their topic and methodology and it is necessary to introduce them within
a more general point of view, rooted in the historical context of the field.
In fact, although recently identified as a distinct research track, the
conceptual tools manipulated by Computational Neuroscience are the
successors of many attempts implying the introduction of mathematical
formalisms into the field of Neuroscience.

First to be mentioned is the description of the brain as a logic ma-
chine, similar to a logical circuit (McCulloch and Pitts, 1943) or a digital
computer (von Neumann, 1958), though it has finally revealed to be in-
effective. In fact, the physical substrate supporting cognition strongly
differs from the computer both in its structure (i.e. its organization re-
lies on decentralized and reconfigurable circuits), and in its function:
a vast majority of the brain operations have little to do with the the-
ory of logical reasoning. Even considered relevant to some point until
the late nineties, the Turing computer metaphor is almost abandoned
nowadays at the profit of concepts coming from theoretical physics, ap-
plied mathematics or statistics. The historically closer concept to have
gained a large echoe in the field is Shannon entropy (Shannon, 1948)
which was proposed in the forties as a measure of the total amount
of information transiting through a physical channel. In Neuroscience,
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such typical channels are, for instance, a synapse, an axon, or whole
populations of neurons. Derivative concepts such as Kullback-Leibler
divergence or cross-entropy of a series of spikes is similarly offering
quantitative bounds on the total amount of information a spike train
can handle. The paper of Cessac et al presented in this issue offers a
good overview of the main conclusions that can be drawn out of this
family of concepts.

Many of the conceptual tools developed in the eighties and nineties
in the Neural Networks community have proven to be relevant metaphor
for brain processing, such as the stability/plasticity trade-off (Carpen-
ter and Grossberg, 1987), the principles of parallel distributed process-
ing (Rosenblatt, 1962) and distributed representation (Hopfield, 1982),
the definition of main network architectures (such as feed-forward, lat-
eral or recurrent) or the notion of self-organizing maps (Kohonen, 1982).
All of those models have primarily been designed for other purpose than
biological modeling. They have indeed no straightforward relationship
with the nervous system, but can serve as a metaphor of the plastic-
ity processes taking place in the brain. In particular, they should help
in identifying the structural constraints that a physical substrate un-
dergoes when the learning of a new item is imposed. Notions like the
loading capacity, over-learning and forgetting are addressed by these
sorts of models. The paper of Glotin et al presented in this issue illus-
trates this approach by comparing real learning curves with artificial
ones obtained on simple ART neural network.

From the electrical engineer perspective, the brain is a complex de-
vice that is to be “back-engineered” in order to extract and identify the
different functions at work. Under this approach, the specific nature of
the components are not important, only the (input/output) relationship
between the different components matters, in order to maintain the sys-
tem between the bounds of some viability domain (Wiener, 1948). This
approach has of course a long history in various fields. When used in
brain modelling, the emphasis is put on the physical constraints (the
so-called “embodiment”) and the fundamental and archaic orientation
of nervous activity towards production of appropriate postural compen-
sations, steering movements and locomotion. From this perspective, the
paper of Portelli et al in the present volume gives the principles of an
autonomous flying pilot whose control system is inspired from the brain
of a fly.

Many advances in the field of nonlinear dynamical systems have
proven to be effective at describing large populations of interacting neu-
rons, the so-called “neural assemblies” (Hebb, 1949). The notion of at-
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tractor neural network has been popularized by Hopfield (Hopfield, 1982)
which opened the way to many fruitful contributions of dynamical physi-
cists to the domain. It is commonplace now to identify the field of Com-
putational Neuroscience to a “dynamical system” oriented description
of brain activity. The principles of dynamical systems are indeed rele-
vant at different places, for giving a synthetic description of intricate
EEG or fMRI signals in terms of chaotic attractors, long range synchro-
nization, neural fields and other “mean field” descriptions. The paper
by Chemla and Chavane gives examples of this approach by proposing
different scales of analysis for identifying the sources of optical imaging
signals. On the basis of computer simulations, the paper by Voges and
Perrinet explores the parametric domain under which synchronous or
asynchronous activities are made possible under various connectivity
patterns between large populations of randomly coupled neurons.

The signal processing approach (including adaptive filtering, kernel-
based decomposition and Bayesian inference) is another dominant field
of Computational Neuroscience. Close from the machine learning and
artificial vision framework, it addresses the question of how the brain
may capture the principal features of its environment from a statisti-
cal point of view. Finding and describing such an extraction process
and confront it to real brain activity may facilitate the understanding
of the real underlying processes. Akin to this approach, the paper by
Beck and Neumann explores how the form and motion pathways may
interact in the first steps of high-level visual processing, while Raud-
ies and Neumann address the question of transparent motion detection
and processing.

The intrinsic characteristics of neuronal circuits also raise interest-
ing computational issues. The microscopic organization of the neuronal
substrate suggests various roles played by different classes of cells.
Computer simulation of physiologically inspired neuronal models may
allow to decipher the complex interaction of electrical and chemical sig-
nals and identify elementary mechanisms of feature extraction and de-
cision making. In this perspective, the paper of Hugues and José ad-
dresses the question of the interaction between pyramidal cells and in-
terneurons in V4 visual processing. Such numerical simulation are also
important to study synaptic plasticity and its implication for neuronal
coding, adaptation and memory. Since, intrinsic mechanism of synap-
tic plasticity are still not fully deciphered, computer simulations can
give some cues about the putative large scale effects of the local plas-
ticity mechanisms. Along the same lines, the contribution of Baroni
and Varona analyses the role of intrinsic cell’s properties in shaping
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the receptive field of neurons with spike-timing dependent plasticity. In
the field of electrophysiological studies, fast hardware simulations now
allow to directly (and reciprocally) stimulate biological cells with realis-
tic artificial signals. The paper of Boussa et al gives an insight in this
type of work by studying the effect of artificial self-inhibition in cultured
neurons.

4 Conclusion
Computational Neuroscience is intrinsically an integrative approach gen-
erating multiple interactions from biology to electronics, from in vivo to
in silico. In the long-term scale, it is foreseen to propose major advances
in three principal domains. First, even if a full suppletion of large neu-
ronal populations seems out of reach at the present stage, a better un-
derstanding of brain processes will allow to build better interface devices
to compensate for motor or sensory deficits (brain-computer interfaces,
hybrid wet- and hard-ware devices). A second objective is to implement
realistic simulations of the operations taking place in the brain. In this
perspective, computer simulations of macroscopic brain activity could
help in understanding the effect of focal lesions as well as allowing to
explore the putative effects of of new drugs and treatments. Third, a
better understanding of the key principles that make the brain learn
and adapt itself over time could potentially pave the way to a new gen-
eration of artificial autonomous devices and robots but also to new ways
of thinking about computational architectures for future computers.

As an emergent field, Computational Neuroscience has recently ben-
efited from substantial institutional support and some international in-
stitutes have emerged to promote a coordinated development (INCF in
Stockholm or Bernstein centers in Germany). This recent development
is nonetheless rooted in the last 60 years history of information science
and many of the research work enrolled under the “Computational Neu-
roscience” flag have a rather diverse conceptual background. Efforts to
unify the theoretical basements are still to be tackled. The blooming
of community based efforts in modeling (Davison et al., 2008) and the
important flow of new students are encouraging signs that significant
advances should take place in the future and that a common language
may emerge from these scientific exchanges. This common language
should finally allow to blend its original multi-disciplinary origin and
to step over the different levels at which the brain is currently studied,
from multiple levels to multi-level.
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