News & Events

Contact Information

Business Card

Laurent Perrinet - Team InViBe
Institut de Neurosciences de la Timone UMR 7289
Aix Marseille Université, CNRS, 13385 cedex 5, Marseille, France
Researcher
http://invibe.net/LaurentPerrinet

Work

Email

<Laurent DOT Perrinet AT univ-amu  DOT fr>

Address

Institut de Neurosciences de la Timone (UMR 7289)
Aix Marseille Université, CNRS
Faculté de Médecine - Bâtiment Neurosciences
27, Bd Jean Moulin
13385 Marseille Cedex 05
France

Phone

+33.491 324 044

Personal

Email

<Laurent DOT Perrinet AT gmail DOT com>

Mobile

+33 6 19 47 81 20

Social networks

CiteUlike
Mendeley
SCOPUS
ORCID
Google scholar
ResercherID
G+
FB

GoldenPyramid.png

Figure 2: The Golden Laplacian Pyramid. To represent the edges of the image at different levels, we may use a simple recursive approach constructing progressively a set of images of decreasing sizes, from a base to the summit of a pyramid. Using simple down-scaling and up-scaling operators we may approximate well a Laplacian operator. This is represented here by stacking images on a Golden Rectangle, that is where the aspect ratio is the golden section $\phi \eqdef \frac{1+\sqrt{5}}{2}$. We present here the base image on the left and the successive levels of the pyramid in a clockwise fashion (for clarity, we stopped at level $8$). Note that here we also use $\phi^2$ (that is $\phi+1$) as the down-scaling factor so that the resolution of the pyramid images correspond across scales. Note at last that coefficient are very kurtotic: most are near zero, the distribution of coefficients has long tails.


«Si tu manges le fruit d'un grand arbre, n'oublie jamais de remercier le vent!» tradition orale bambara au Mali

welcome: please sign in